

FIRST MFP Simulation thermique pour consolider l'approche fiabiliste des composants

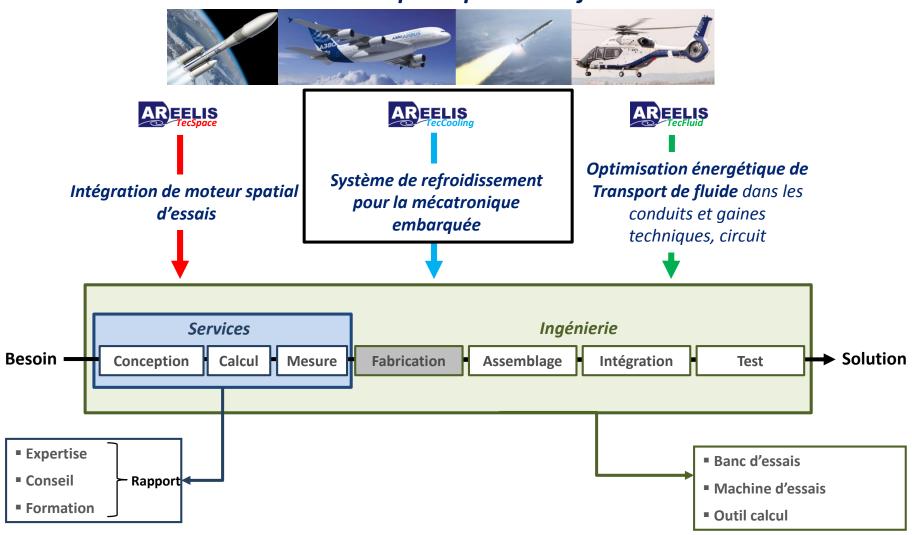
Normandy Reliability Technology Workshop – 15 juin 2017 Rouen

Dr. E. ROULAND - Dr. S. YON

- → Un peu de PUB : AREELIS Technologies
- → Objectifs des travaux FIRST MFP Application Safran Electrical & Power
- → Les modèles numériques
- → Quelques résultats et l'outil EleXTherm
- → Projet CRIOS

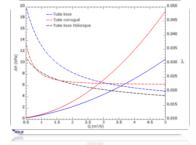
AREELIS Technologies

Centre d'étude et d'ingénierie Mécanique des fluides et thermique

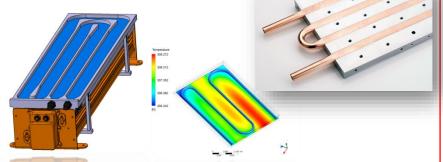


Appui technologique pour l'innovation dans le Transport Aéronautique - Spatial - Défense

AREELIS Intégration de moteur spatial d'essais


- Conception machine et outillages spécifiques de montage
- > Assemblage et tests cryogéniques en salle blanche ISO8
- Moyen : ➤ Salle blanche ISO8 avec supports de montage
 - ➤ 2 lignes de servitude fluide
 - ➤ Pont roulant 2 axes + palan (1 tonne)
- Partenariat : > Airbus Safran Launchers

ARELIS Optimisation énergétique de Transport de fluide


- ➤ Mise en œuvre et conception de banc d'essais fluidique
- > Fourniture de logiciel calcul de perte de charge Asppech
- > Expertise fluidique
- Moyen : ➤ Bancs d'essai aérauliques de mesure de perte de charge, Outil CFD, Métrologie laser
- Partenariat : ➤ Spiragaine

AREELIS Système de refroidissement pour la mécatronique embarquée

- > Diagnostic thermique (essais et modélisation numérique)
- > Conception, assemblage et intégration de refroidisseurs
- > Thermomanagement
- Moyen : ➤ Bancs d'essai aérothermique, choc thermique➤ Outil CFD, CAO
- Partenariat : ➤ CRIOS

La simulation numérique Outil d'appui à nos projets

Projet FIRST MFP

➤ Développer et exploiter des codes numériques visant à consolider l'approche fiabilité et robustesse d'un composant électronique de type Onduleur-Convertisseur TO247 sur le volet thermique => Besoin Safran Electrical & Power

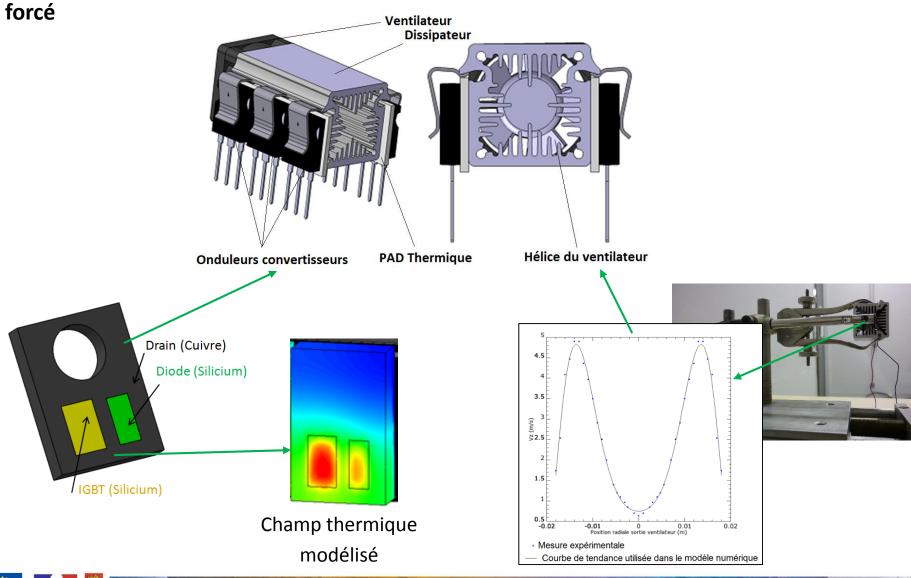
→ Objectifs :

- ■Connaître les paramètres influents la dissipation thermique des composants électroniques embarqués.
- ■Comprendre l'impact de l'évolution de ces paramètres (vieillissement et défaillance) sur la qualité de la dissipation thermique.
 - → Budget 150 k€ 1 an

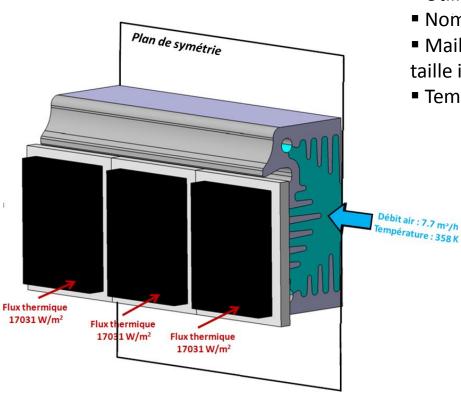
→ Le support de cette étude :

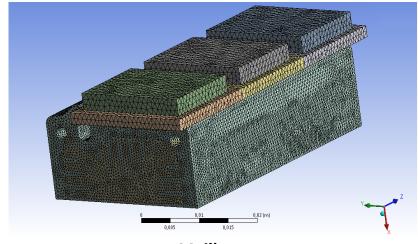
■Composant onduleur convertisseur TO247 (SAFRAN) et refroidissement par flux d'air forcé

→ Les moyens utilisés et développés par AREELIS Technologies :


- Simulations numériques: CDF-3D (RANS k-ε) ANSYS Fluent/thermal et CAO : CATIA V5R19
- Un banc d'essai fluidique expérimental pour mesure de profil de vitesse du ventilateur
- Tableur Excel

>Composant onduleur convertisseur TO247 (SAFRAN) et refroidissement par flux d'air





➤ Modélisation globale du système

- Utilisation d'un plan de symétrie (YZ)
- Nombre de mailles : 1 573 760
- Maillage affinée au niveau des ailettes pour être d'une taille inférieure à la couche limite thermique (2.52 10⁻⁴ m)
- Temps de calcul : moyenne 3-7 heures CPU

Maillage

\triangleright Modélisation CFD Rans- k- ε pour la part écoulement fluide

Equation de transport de quantité de mouvement (Navier-Stokes)

$$\rho \left(\frac{\partial U_i}{\partial t} + U_j \frac{\partial U_i}{\partial x_j} \right) = \rho E_i - \frac{\partial p_i}{\partial \vec{x}_i} + \frac{\partial \sigma_{ij}}{\partial \vec{x}_j}$$

Hypothèses:

ρ = cte, gravité négligée

Conservation de la quantité de mouvement

$\frac{\partial U_i}{\partial x_i} = 0$

$$\frac{\partial U_i}{\partial t} + U_j \frac{\partial U_i}{\partial x_i} + \frac{1}{\rho} \frac{\partial P_i}{\partial x_i} - \nu \frac{\partial^2 U_i}{\partial x_i^2} = 0$$

Hypothèse de Boussinesq

$$u_{j}\frac{\partial u_{i}}{\partial x_{j}} + \frac{1}{\rho}\frac{\partial p_{i}}{\partial x_{i}} - \nu\frac{\partial^{2}u_{i}}{\partial x_{j}^{2}} = 0$$

$$u_{j}\frac{\partial u_{i}}{\partial x_{j}} + \frac{1}{\rho}\frac{\partial p_{i}}{\partial x_{i}} - \nu\frac{\partial^{2}u_{i}}{\partial x_{j}^{2}} + \frac{1}{\rho}\frac{\partial u_{i}}{\partial x_{j}^{2}} = 0$$

$$\Rightarrow u_{j}\frac{\partial u_{i}}{\partial x_{j}} + \frac{1}{\rho}\frac{\partial p_{i}}{\partial x_{i}} - \nu\frac{\partial^{2}u_{i}}{\partial x_{j}^{2}} + \frac{1}{\rho}\frac{\partial u_{i}}{\partial x_{j}^{2}} = 0$$

> Stationnaire

 \triangleright modèle de Rans: $F_i = f_i + f'_i$

$$\rightarrow$$

$$u_{j}\frac{\partial u_{i}}{\partial x_{j}} + \frac{1}{\rho}\frac{\partial p_{i}}{\partial x_{i}} - \nu \frac{\partial^{2} u_{i}}{\partial x_{j}^{2}} + \frac{1}{\rho}\frac{\partial u_{i}^{2}u_{j}^{2}}{\partial x_{j}} = 0$$

$$\triangleright \overline{u'_i} = 0$$

$$u_{j} \frac{\partial k}{\partial x_{j}} = \frac{\partial}{\partial x_{i}} \left[\left(\nu + \frac{\nu_{t}}{\sigma_{k}} \right) \frac{\partial k}{\partial x_{i}} \right] + G_{k} - \epsilon$$

$$v_{t} = C_{\mu} \frac{k^{2}}{\epsilon} \longrightarrow \epsilon = \nu \frac{\overline{\partial u'_{i} \partial u'_{i}}}{\overline{\partial x_{j}} \overline{\partial x_{j}}}$$

$$u_{j} \frac{\partial \epsilon}{\partial x_{j}} = \frac{\partial}{\partial x_{i}} \left[\left(\nu + \frac{\nu_{t}}{\sigma_{\epsilon}} \right) \frac{\partial \epsilon}{\partial x_{i}} \right] + C_{1\epsilon} \frac{\epsilon}{k} G_{k} - C_{2\epsilon} \frac{\epsilon^{2}}{k}$$

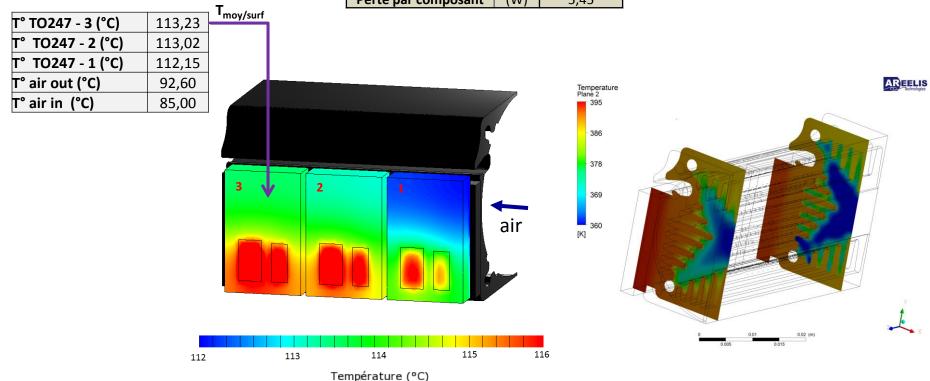
$$G_{k} = \nu_{t} \left(\frac{\partial u_{i}}{\partial x_{i}} + \frac{\partial u_{j}}{\partial x_{i}} \right) \frac{\partial u_{i}}{\partial x_{i}}$$

Application

$$\longrightarrow$$

$$\sigma_k = 1.0$$
$$\sigma_{\epsilon} = 1.3$$

$$C_{\mu} = 0.09$$
.0
 $C_{1\epsilon} = 1.44$

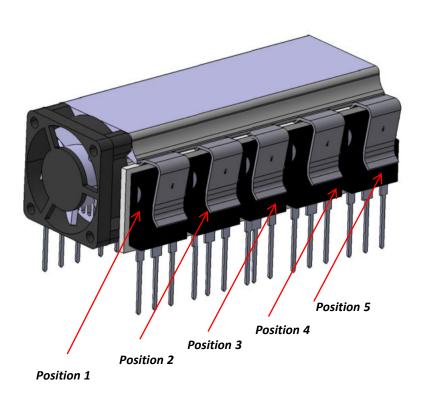

$$C_{2\epsilon} = 1.92$$

> Résultats de calcul: cas nominal et équipement neuf

T ambiante	°C	85
Un	(V)	300
1	(1)	7
durée du cycle		Infinie
P _{IGBT}	(W)	3,45
P _{diode}	(W)	2
Perte par composant	(W)	5,45

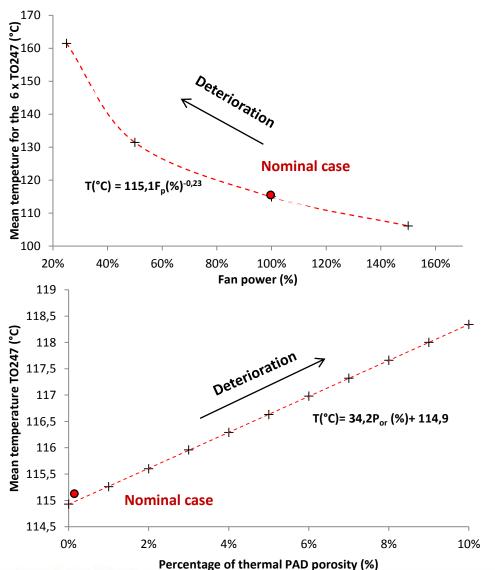
> Données d'entrées et conditions limites influentes sur la thermique du système

→19 paramètres


Données d'entrées et conditions limites					
FLUIDE	TO247	PAD	Radiateur	Ventilateur	
Viscosité	Composition	Conductivité thermique	Conductivité thermique	Puissance	
Température entrée	Puissance	Porosité	Surface	Profil de vitesse	
Humidité relative	Conductivité thermique	Epaisseur	Diamètre équivalent		
Masse volumique	Nombre		Longueur		
Conductivité thermique	Durée du cycle				
Facteurs de vieillissement					


⇒ 152 configurations calculées

➤ Augmentation de la longueur du radiateur et du nombre de TO247

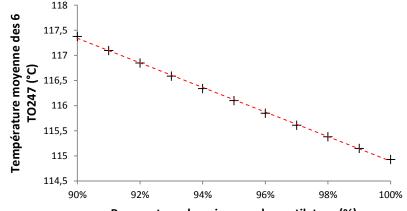


Evolution de la température moyenne des composants TO247 en fonction de la position du composant

➤ Influence de la dégradation d'un paramètre fonctionnel

Evolution de la température moyenne des 6 composants TO247 en fonction du pourcentage de **puissance du ventilateur**

Evolution de la température moyenne des 6 composants TO247 en fonction de la **porosité du PAD thermique à l'air**



≻Développement l'outil numérique : EleXTherm

DONNEES D'ENTREE					
PARAMETRES FLUIDIO	UES		PARAMETRES DU DISSIPA	TEUR THER	MIQUE
Vitesse (moyenne)	U (m/s)	2,35	Epaisseur moyenne radiateur	e1 (m)	0,0025
Diamètre hydraulique	D (m)	0,0235	Epaisseur moyenne pad	e2 (m)	0,002
Longueur radiateur	L (m)	0,05	Epaisseur moyenne composant	e3 (m)	0,003
Viscosité fluide	v (m²/s)	0,0000208	Conductivité radiateur	λ1 (W/m.K)	237
Capacité calorifique	Cp (J/Kg.K)	1004	Conductivité pad	λ2 (W/m.K)	18,01
Masse volumique	ρ (Kg/m3)	1,225	Conductivité composant	λ3 (W/m.K)	401
Viscotsité dynamique	μ (Kg/m.s)	2,55E-05	Conductivité fluide	λf (W/m.K)	0,023
Température entrée fluide	Te (°C)	85	Pourcentage porosité Pad	(%)	0
			Puissance ventilateur	(%)	100
PARAMETRES ELECTRI	QUES		Périmètre radiateur contacte	C (m)	0,35
Puissance th du composant	P (W)	5,45			

DONNEES DE SO	RTIE
Température de sortie fluide (°C)	93,7
Température du composant 1 (°C)	112,9
Température du composant 2 (°C)	112,1
Température du composant 3 (°C)	111,2

LOI DE FIABILITE				
	Puissance ventilateur	100% à 90%		
	Profil vitesse	100% à 90%		
	Porosité du PAD	0% à 10%		

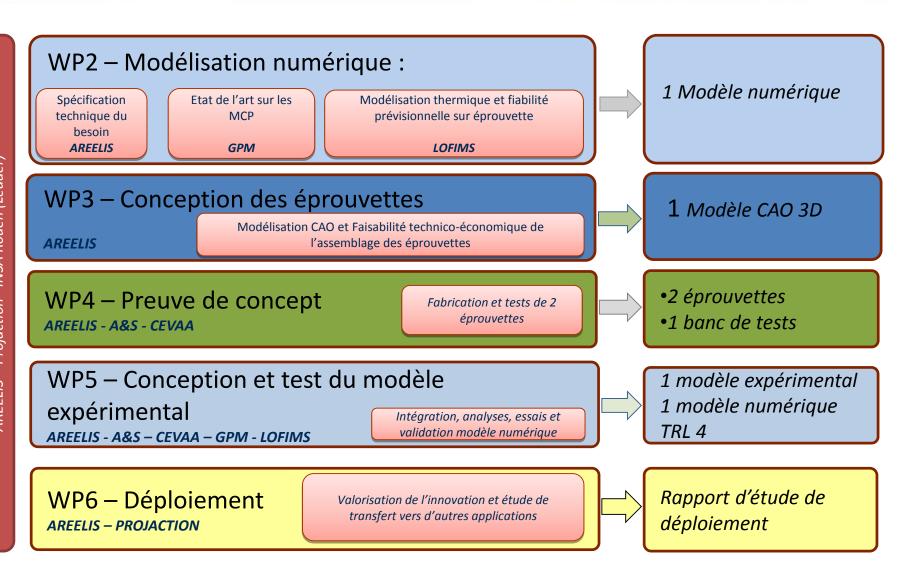
Pourcentage de puissance du ventilateur (%)

L'outil numérique EleXTherm est réalisé à partir :

- Des équations des échanges thermiques convectif et conductif
- Des corrélations des écoulements en conduites (Reynolds, Prandlt, Nusselt,...)
- Des résultats des simulations numériques

Solution de refroidisseur pour Composants électRonlques embarqués en envirOnnement Sévère

Projet CRIOS

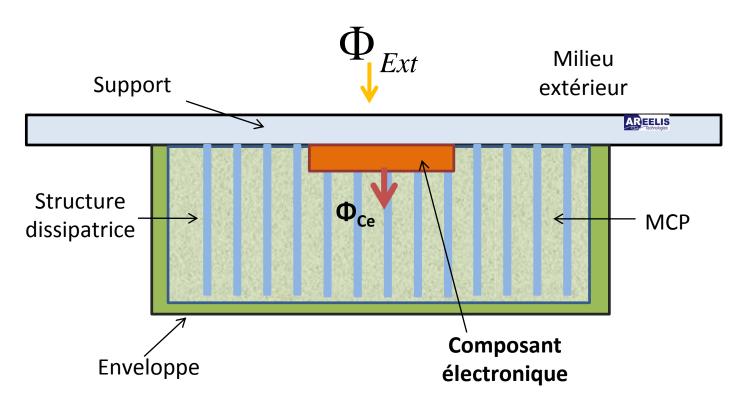


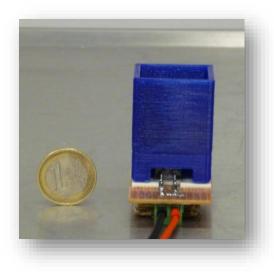
□CRIOS est	un projet d	le rech	erche so	outenu par N	Normandie
AeroEspace,	co-financé	par la	région	Normandie	et par les
fonds FEDER					

- Il a pour objectif de développer une nouvelle solution de refroidissement de systèmes électriques et électroniques embarqués soumis à des environnements sévères
- □ Il se base sur l'utilisation des matériaux à changement de phase
- □II se différencie des autres solutions classiques:
 - **■**Sans consommation d'énergie
 - ■Pas de risque de « panne » fonctionnelle
 - S'intègre à la structure existante (occupation du vide)

Durée du projet: 2 ans – budget: 1.2 M€

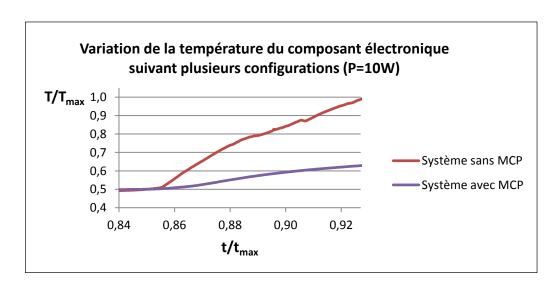
- □ Dissipation :1-100 W par cm²
- ☐ Températures maintenues dans une plage 60 °C − 120 °C suivant la demande
- □Configuration à la forme du volume disponible (ordre d'échelle: 1 cm3)
- **□**Utilisation de l'espace non-fonctionnel




Schéma de principe de CRIOS

 Φ_{Ce} : flux de chaleur dissipé par le composant électronique.

 $\Phi_{\rm ext}$: flux de chaleur émis par le milieu extérieur à forte température.



Vue du système avec un modèle d'enveloppe réalisé en fabrication additive (système non optimisé)

Réchauffement du composant pour une puissance de chauffage de 10 W.

	T _{max} -T ₀ (°C)	Temps de protection * (en s)
Système sans refroidissement	88.6	5.3
Système avec MCP	25.4	18.8

^{*}Temps de protection mesuré pour un système avec MCP non optimisé thermiquement : durée pendant laquelle la température du composant électronique $< T_{limite}$

Avec nos remerciements

AREELIS Technologies 02 32 95 14 14

areelis@areelis.com

www.areelis.fr

Technopole du Madrillet 675 Avenue Isaac Newton 76800 St Etienne du Rouvray

