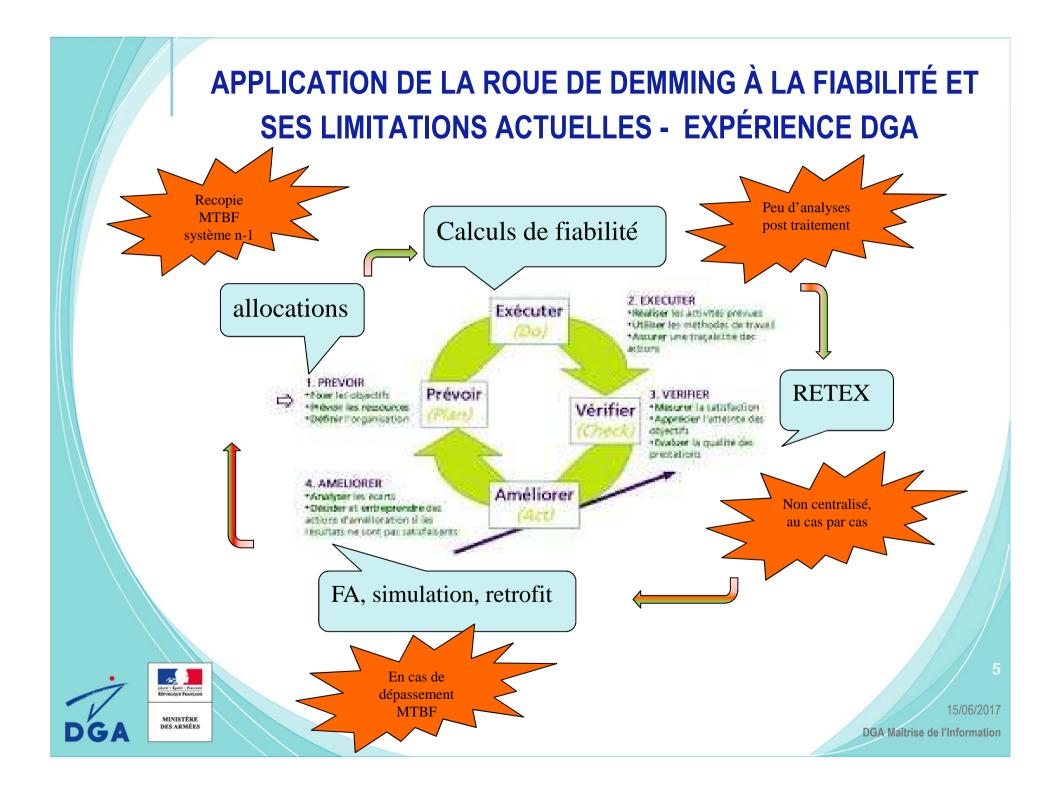


PLAN DE LA PRESENTATION

- Introduction
- La fiabilité vue au travers du prisme des fabricants
- La fiabilité vue au travers du prisme des équipementiers
- La fiabilité axe de recherche académique
- Conclusions

1. INTRODUCTION

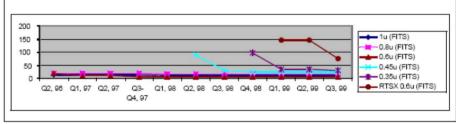
PANORAMA FRANCAIS


- Autour des grands centres d'électronique
- Mais aussi diffus sur tout le territoire (sociétés de services, académiques)
- Polymorphique : du concepteur aux services de maintenance en passant par la recherche, la SDF
- Approche pluridisciplinaire (mécanique, chimie, maths, physique, électronique, facteurs humains...)

Enjeux : comment créer un écosystème de la fiabilité robuste, efficient et au service de tous ?

2. LA FIABILITÉ VUE AU TRAVERS DU PRISME FABRICANT

(FIABILITÉ INTRINSÈQUE)



LE TAUX DE DEFAILLANCES VU PAR LES FABRICANTS (WORLDWIDE - FRANCE)

- Compilation de données de qualification :
 - 0 défaut, 1000h ,
 - Dépend du nombre d'heures composants cumulés (pas d'exigences dans les référentiels JEDEC 85, 143,122,... ou IEEE 1413)
 - Pénalise les technologies en cours d'introduction et les petits fondeurs

LA DUREE DE VIE VUE PAR LES FABRICANTS (WORLDWIDE-FRANCE). CAS DES DSM

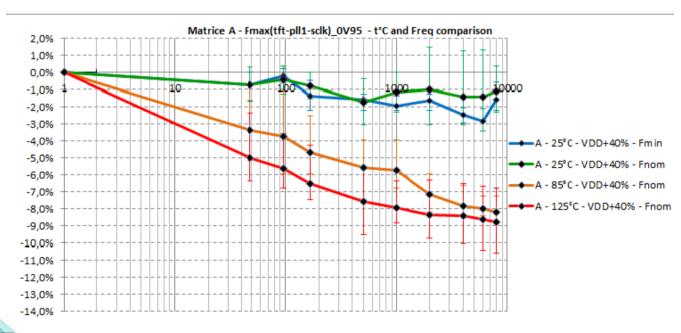
- Concept WLR (Wafer Level Démonstration à partir de PCM (Pattern Control Monitor) suivant les standards JEDEC (122,118...).
 - Chaque mécanisme d'usure identifié séparément (TDDB, HCI, BTI, EM ...)
 - Validation de la bibliothèque de cellules pire cas (T, corner lots): 10 ans par exemple, 100% activité pour chaque nœud, 0,1% de défaillance.
 - Data pack complet confidentiel. Extrait public.
 - Possibilité de conception de circuits avec bibliothèque 'vieillie' intégrant les dérives paramétriques
 - Monitoring périodique et cartes de contrôles associées (%extrinsèque / courbe de Weibull)
- Loi d'Arrhenius déduite des essais sur transistors de test non valide au niveau circuit

Exemple Asics

Loi d'Eyring déduite des essais sur oscillateurs en anneaux non confirmée à ce jour

Exemple Asics 2

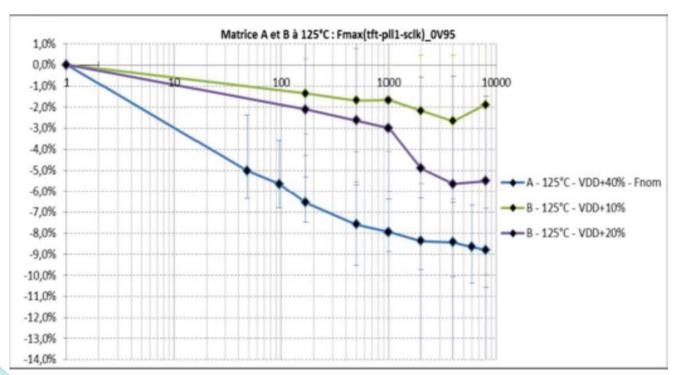
Equipementier



LIMITATION DE LA LOI D'ARRHENIUS SUR ASICS CONÇUS EN FRANCE

- Test longue durée (24 mois, 12 mois acquis)
- Energies d'activation ≠ suite extraction 25°C/85°C et 85/125°C

Ea = [1,5 eV-0,4 eV] versus 0,9 eV (constructeur), loi complexe en fonction du temps



source : Thales TCS

LIMITATION DE LA LOI D'EYRING SUR ASICS

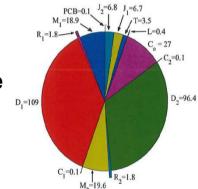
- Test longue durée (24 mois, 12 mois acquis)
- Coefficient n ≠ suite extraction 1.1/1.2 VDD et 1.2/1.4 VDD
 n= [47 23] versus 13 (constructeur), variation temporelle complexe

source: Thales TCS

durée de vie

3. LA FIABILITÉ AU TRAVERS DU PRISME EQUIPEMENTIER

(FIABILITÉ EXTRINSÈQUE)



VISION DGA - SYNTHÈSE SUR 20 ANS D'ACTIVITÉ EN FRANCE

- Un modèle prévisionnel, quelle que soit sa qualité, reste un modèle entaché d'une incertitude largement supérieure aux incertitudes habituelles de l'électronique.
- Un modèle prévisionnel est auto suffisant pour comparer des architectures entre elles mais pas pour calculer <u>avec précision</u> le nombre de rechanges pendant toute la durée de vie d'un programme (RETEX obligatoire les premières années).
- FIDES est un modèle largement plus réaliste que la MIL HDBK mais possède ses propres limitations (composants émergents, impact électrique des On/Off ...)
- Le travail du fiabiliste commence lorsque le logiciel a délivré le taux de défaillance systèmes (analyse par contributeurs, par phase, pareto composants).
- La déclinaison du profil de vie système au niveau de ses sous ensembles est essentielle (stress thermomécaniques...)

L'imprécision des modèles diminue avec le nombre de composants

COMPARAISON TAUX DE DÉFAILLANCES PREVISIONS / RETEX FRANÇAIS (1)

FAMILLE	λ _O FIDES	Cumu	ils pannes et heures composants	FAMILLE REX						
		Nb pannes comp	Heures de fonctionnement composants	Lambda min 90%	Lambda min 80%	Lambda 50%	Lambda max 80%	Lambda max 90%	Validité du REX	Ratio REX/Lambda
ASIC	1,079	5	6 770 140 278	0,338	0,412	0,764	1,276	1,453	REX non utilisable	
CI microprocesseur	0,668	10	5 259 289 715	1,173	1,335	2,029	2,929	3,225	REX exploitable	+ 3
CI Programmable	0,714	18	8 996 470 924	1,383	1,520	2,075	2,752	2,967	REX exploitable	+ 2,9
CI mémoire	0,283	21	18 280 081 074	0,815	0,889	1,185	1,542	1,654	REX exploitable	+ 4,2
CI numérique et d interface	0,088	7	73 535 356 677	0,049	0,058	0,097	0,152	0,170	REX non utilisable	
CI analogique et de puissance	0,427	36	92 891 204 763	0,292	0,312	0,389	0,478	0,506	Bon REX	- 1,1
Diode	4,089	11	403 449 296 199	0,017	0,019	0,029	0,041	0,045	REX exploitable	- 141,4
Transistor	0,047	18	114 623 050 835	0,105	0,116	0,159	0,211	0,228	REX exploitable	+ 3,4
Optoelectronique	0,031	3	6 210 373 834	0,220	0,281	0,591	1,076	1,249	REX non utilisable	
Piezoélectrique	4,765	4	5 309 012 509	0,371	0,458	0,880	1,506	1,724	REX exploitable Tf	- 5,4
Résistance fixe & variable	0,026	9	701 961 143 862	0,007	0,008	0,013	0,019	0,021	REX exploitable Tf	- 2
Potentiomètre	0,413	4	2 038 431 429	0,967	1,193	2,291	3,921	4,490	REX non utilisable	
Condensateur	0,161	42	752 891 884 784	0,044	0,046	0,057	0,069	0,072	Bon REX	- 2,8
Fusible	0,143	5	1 052 053 578	2,484	2,996	5,390	8,816	9,993	REX non utilisable	
Inductance & transformateur	0,078	15	76 624 392 788	0,126	0,140	0,198	0,270	0,294	REX exploitable	+ 2,5
Relais	49,045	2	1 950 673 251	0,419	0,565	1,371	2,728	3.227	REX exploitable Tf	- 35,8
Interrupteur/Commutateur	1,126	6	14 006 934 488	0,210	0,251	0.440	0.707	0,798	REX exploitable Tf	- 2,6
Connecteur	0,677	31	19 121 842 067	1,218	1,307	1,656	2.062	2,188	Bon REX	+ 2.4
CI Hyper-fréquence et RF	2,179	4	15 578 735 433	0,107	0,134	0,268	0,471	0,543	REX exploitable Tf	- 8,1
PCB	7,000	17	7 893 424 257	1,474	1,624	2,238	2.991	3,230	REX exploitable	- 3.1
Carte COTS	212	15	45 782 015	219,212	243,224	342,229	465,082	504,502	REX exploitable	+ 1,6
Ecran LCD (TFT, STN)	7547	16	127 574 351	84,908	93,876	130,652	175,988	190,486	REX exploitable	- 57,8
CRT moniteur	3798	2	4 510 126	181,301	244,354	592,902	1180,083	1365	REX exploitable Tf	- 6,4
Disque dur	196	4	1 680 612	1172	1447,444	2779,291	4756	5446	REX non utilisable	
Convertisseur de tension	28.789	15	948 621 448	10.580	11.738	16.517	22.446	24.348	REX exploitable	- 1,7
Pile, Batterie lithium et nickel	0,306	2	2 104 817	388,486	523,592	1270,448	2528,638	2991	REX non utilisable	
Ventilateur	100	4	115 610 871	17,041	21,041	40,402	69,142	79,175	REX exploitable Tf	- 2,5
Tube	3798	3	535 586	2551	3257,686	6856,162	12473	14476	REX non utilisable	
Dispositif tournant	100	0	5 560 158	9,225	18,949	124,663	414,122	538,785	REX non utilisable	
Lampe	0,409	1	6 734 178	52,770	78,972	249,228	577,609	704,446	REX non utilisable	
Filtre électronique	0,382	4	4 066 725 301	0,484	0,598	1,149	1,966	2,251	REX non utilisable	
Compteur, panneau	2,154	1	1 253 032 040	0,284	0,424	1,339	3,104	3,786	REX non utilisable	
Clavier	12,000	0	4 628 151	11,083	22,765	149,768	497,517	647,285	REX non utilisable	/ // 13
Fonction passive R. H. H.	0,633	2	3 764 812 417	0,217	0,293	0,710	1,414	1,672	REX non utilisable	

source: F. Davenel (DGA MI) PEA REX (Thales MBDA....) 15/06/2017
DGA Maîtrise de l'Information

COMPARAISON TAUX DE DÉFAILLANCES PREVISIONS / RETEX FRANCAIS

(2)					
Armées	équipement	MTBF REX / MIL	MTBF REX / FIDES		
Marine	А	5,2	3,3		
	В	2,1	1,1		
	С	1,4	0,9		
	D	1,4	1,0		
Air	E	4,8	1,2		
Terre	F	12,4	2,2		
Air	G	2,4	0,7		
ΔII	Н	4,1	0,8		
Air	1	2,5	1,3		
All	J	1,4	0,6		

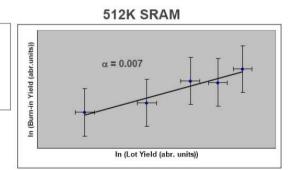
Les deltas proviennent de lots Maverick, de sensibilité de la conception mais aussi de l'impact non mesurable de la maturité des process sur la fiabilité.

Yield and Reliability Defects

Not a yield or reliability defect

Potential reliability defect

Potential yield defect and reliability defect

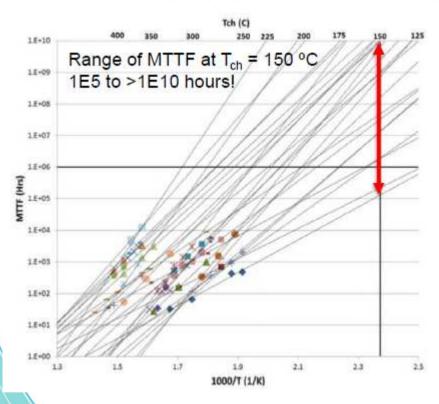

Yield Defect

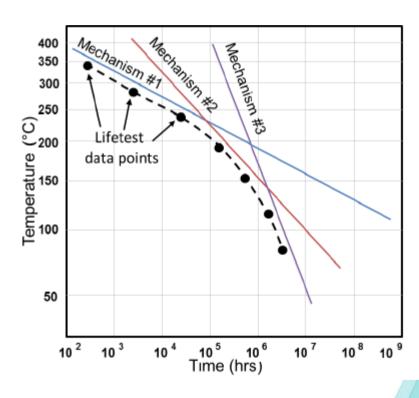
source: F. Davenel (DGA MI) PEA REX (Thales MBDA ...)

source : AGERE Systems

For random defects

$$Y_R = Y_0 e^{-\alpha D_{yield} A} = Y^{\alpha}$$
$$\log(Y_R) = \alpha \log(Y)$$

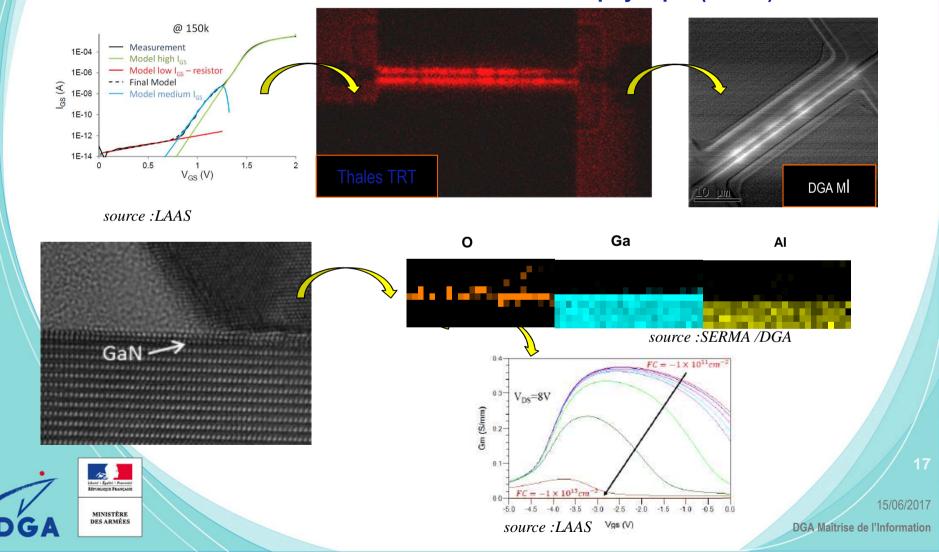

4. LA FIABILITÉ, AXE DE RECHERCHE ACADEMIQUE



EXEMPLES DES TECHNOLOGIES GAN (1)

Pas de consensus sur la fiabilité du GaN au niveau mondial

source : Université de Parme


source :IROCS 2017 (HRL)

EXEMPLES DES TECHNOLOGIES GAN EUROPÉENNES (2)

Nécessité absolue de coupler caractérisation électrique fine, analyse de défaillance à ultra haute résolution et simulation physique (TCAD).

5. CONCLUSIONS

MATRICE SWOT – FIABILITÉ EN FRANCE

• Forces:

- Niveau d'expertises des différents acteurs industriels, académiques,...
- Bon niveau d'investissements machines (PoF)
- Leadership
- Position de France/Europe

Opportunités :

- Renforcer le travail en réseau
- Renforcer le travail au niveau européen
- Pronostic (rebouclage HUMS)
- Inclure des modules de formation fiabilité dans tout cursus d'ingénieur.

Faiblesses

- Acteurs dispersés
- Multiplication des réseaux d'excellence (IMDR, GaNEX, CFF, ANADEF, IRT, NAE.....).
- Sources de financements parfois difficiles à convaincre
- Base de données non partagées
- Marketing fiabilité déficient
- Peu de modèles pour les passifs

Menaces:

- Compétences clés détenues par quelques personnes (turnover....)
- Fiabilité dépendant de plus en plus de l'architecture électronique, difficilement accessible par les sociétés de service
- Marges réduites sur les DSM
- Complexité des mécanismes requérant une masse critique 15/06/2017 d'experts.

